Services for Organizations

Using our research, best practices and expertise, we help you understand how to optimize your business processes using applications, information and technology. We provide advisory, education, and assessment services to rapidly identify and prioritize areas for improvement and perform vendor selection

Consulting & Strategy Sessions

Ventana On Demand

    Services for Investment Firms

    We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

    Consulting & Strategy Sessions

    Ventana On Demand

      Services for Technology Vendors

      We provide guidance using our market research and expertise to significantly improve your marketing, sales and product efforts. We offer a portfolio of advisory, research, thought leadership and digital education services to help optimize market strategy, planning and execution.

      Analyst Relations

      Demand Generation

      Product Marketing

      Market Coverage

      Request a Briefing



        David Menninger's Analyst Perspectives

        << Back to Blog Index

        Revolution Analytics Hosts Contest on Business Predicting the Future

        Revolution Analytics recently announced the winners of its “Applications of R in Business” contest. Revolution Analytics has built a business around supporting R, an open source statistical software package, and extending it with features it licenses to customers. I served as a judge in the contest. Since I was in the midst of analyzing the data for our predictive analytics benchmark research, I was interested to see how the contestants applied predictive analytics techniques to specific business problems.

        As I’ve written previously, predictive analytics is on the rise, despite the fact that the term is a bit of a misnomer. What software vendors, industry analysts and others call predictive analytics may be described more accurately as data mining. Data mining includes both predictive and descriptive analytics. Predictive analytics is used to predict future occurrences, such as the likelihood of an individual customer purchasing a particular product. Descriptive analytics is used to classify things (say, customers or products) into groups. These descriptive characteristics can be used in conjunction with predictive analytics to help produce more accurate predictions. For example, single male customers in group A may be more likely to purchase a particular product than single male customers in group B.

        Nevertheless, the market seems to have adopted “predictive analytics” to encompass the broader category of data mining. I’m comfortable with that use of the term, so here and elsewhere in my research, unless specified otherwise, I consider predictive analytics and data mining to be interchangeable labels. (See: “Technology Terminology: What’s in a Name?”)

        R, as a statistical package, includes many algorithms for predictive analytics, including regression, clustering, classification, text mining and other techniques. The contest submissions supported a variety of business cases, including, among others, predicting order amounts to optimize manufacturing processespredicting marketing campaign effectiveness to optimize marketing spending, predicting liquid steel temperatures to optimize steel plant processes and performing sentiment analysis of Twitter data.

        The entries served to reinforce the notion that using predictive analytics requires specialized skills. Take a look at the entries above and ask how many people in your organization could perform those types of analyses. Despite the requirement for these additional skills, the demand for predictive analytics continues to rise. The entries show one of the reasons for this rise: the value that predictive analytics can provide. Imagine if you could redirect marketing spending from ineffective campaigns to more productive campaigns, or squeeze costs out of your manufacturing processes.

        The entries also demonstrated a best practice: close alignment between the analyst and the underlying business objectives. Predictive analytics is not magic. It requires an understanding of business processes and an understanding of statistical techniques. The judging criteria reflected this requirement as well. One of the three categories we were asked to score was applicability of the submission to business. I think it’s clear how the analyses in the winning entries could provide significant business value.

        If you are not yet applying predictive analytics, check out the submissions for examples of where you might apply them to your business; you can skip the implementation details. If you are using predictive analytics and understand the statistics involved, check out the submissions for suggestions of how you might enhance your own applications. In either case, keep an eye out for the results of our predictive analytics benchmark research to learn more about best practices and how others are using predictive analytics.

        Regards,

        David Menninger – VP & Research Director

        David Menninger
        Executive Director, Technology Research

        David Menninger leads technology software research and advisory for Ventana Research, now part of ISG. Building on over three decades of enterprise software leadership experience, he guides the team responsible for a wide range of technology-focused data and analytics topics, including AI for IT and AI-infused software.

        JOIN OUR COMMUNITY

        Our Analyst Perspective Policy

        • Ventana Research’s Analyst Perspectives are fact-based analysis and guidance on business, industry and technology vendor trends. Each Analyst Perspective presents the view of the analyst who is an established subject matter expert on new developments, business and technology trends, findings from our research, or best practice insights.

          Each is prepared and reviewed in accordance with Ventana Research’s strict standards for accuracy and objectivity and reviewed to ensure it delivers reliable and actionable insights. It is reviewed and edited by research management and is approved by the Chief Research Officer; no individual or organization outside of Ventana Research reviews any Analyst Perspective before it is published. If you have any issue with an Analyst Perspective, please email them to ChiefResearchOfficer@isg-research.net

        View Policy

        Subscribe to Email Updates

        Posts by Month

        see all

        Posts by Topic

        see all


        Analyst Perspectives Archive

        See All