Alation recently announced the release of its 2021.1 version, introducing new data governance capabilities, enhancements in search and discovery through data domains, and extended connector and query coverage for data sources. Alation’s new federated authentication enables users to query cloud services such as Amazon Web Services, Snowflake, Tableau and more, using a single sign-on. The release also includes a Search application programming interface that allows for the integration of Alation...
Read More
Topics:
Analytics,
Business Intelligence,
Collaboration,
Data Preparation,
Data,
Information Management (IM),
AI and Machine Learning
Machine learning is valuable for organizations, but it can be hard to deploy. Our Machine Learning Dynamic Insights research identifies that not having enough skilled resources and difficulty building and maintaining ML systems are pressing challenges organizations face in applying ML. Traditional ML model development is resource-intensive, requiring significant domain knowledge and time to produce and compare dozens of models. And as the number of ML models grow, their management becomes...
Read More
Topics:
business intelligence,
embedded analytics,
Analytics,
Collaboration,
Data Governance,
Data Preparation,
Data,
AI and Machine Learning
The amount of data flowing into organizations is growing exponentially, creating a need to process more data more quickly than ever before. Our Data Preparation Benchmark Research shows that accessing and preparing data continues to be the most time-consuming part of making data available for analysis. This can potentially slow down the organizational functions which depend on the analysis results. Trying to get ahead of the backlog with incremental improvements to existing approaches and...
Read More
Topics:
business intelligence,
embedded analytics,
Analytics,
Collaboration,
Data Governance,
Data Preparation,
Data,
Information Management (IM),
data lakes
Organizations are becoming more and more data-driven and are looking for ways to accelerate the usage of artificial intelligence and machine learning (AI/ML). Developing and deploying AI/ML models can be complicated in many ways, often involving different tools and services to manage these solutions from end to end. Accessing and preparing data is the most common challenge organizations face in this process, and consequently, AI/ML vendors typically incorporate tools to address this part of the...
Read More
Topics:
Analytics,
Business Intelligence,
Collaboration,
Data Governance,
Data Preparation,
AI and Machine Learning
Organizations are accelerating their digital transformation and looking for innovative ways to engage with customers in this new digital era of data management. The goal is to understand how to manage the growing volume of data in real time, across all sources and platforms, and use it to inform, streamline and transform internal operations. Over the years, the adoption of cloud computing has gained momentum with more and more organizations trying to make use of applications, data, analytics...
Read More
Topics:
business intelligence,
embedded analytics,
Analytics,
Collaboration,
Data Governance,
Data Preparation,
Information Management,
Internet of Things,
Data,
natural language processing,
data lakes,
AI and Machine Learning
Having just completed the 2021 Ventana Research Value Index for Analytics and Data, I want to share some of my observations about how the market has advanced since our assessment two years ago. The analytics software market is quite mature and products from any of the vendors we assess can be used to effectively deliver information to help your organization improve its operations. However, it’s also interesting to see how much the market continues to advance and how much investment vendors...
Read More
Topics:
Big Data,
embedded analytics,
Analytics,
Business Collaboration,
Business Intelligence,
Collaboration,
natural language processing,
Conversational Computing,
collaborative computing,
mobile computing,
AI and Machine Learning
Organizations are increasingly using data as a strategic asset, which makes data services critical. Huge volumes of data need to be stored, managed, discovered and analyzed. Cloud computing and storage approaches provide enterprises with various capabilities to store and process their data in third-party data centers. The advent of data platforms previously discussed here are essential for organizations to effectively manage their data assets.
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Collaboration,
Data Governance,
Data Lake,
Data Preparation,
Data,
Microsoft Azure,
AI and Machine Learning
Organizations are dealing with exponentially increasing data that ranges broadly from customer-generated information, financial transactions, edge-generated data and even operational IT server logs. A combination of complex data lake and data warehouse capabilities are required to leverage this data. Our research shows that nearly three-quarters of organizations deploy both data lakes and data warehouses but are using a variety of approaches which can be cumbersome. A single platform that can...
Read More
Topics:
business intelligence,
embedded analytics,
Analytics,
Collaboration,
Data Governance,
Data Preparation,
Information Management,
Data,
data lakes,
AI and Machine Learning
Businesses are transforming their organizations, building a data culture and deploying sophisticated analytics more broadly than ever. However, the process of using data and analytics is not always easy. The necessary tools are often separate, but our research shows organizations prefer an integrated environment. In our Data Preparation Benchmark Research, we found that 41% of participants use Analytics and Business Intelligence tools for data preparation.
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Collaboration,
Data Preparation,
Information Management,
Internet of Things,
Data,
Digital Technology,
natural language processing,
Conversational Computing,
AI and Machine Learning
Traditional on-premises data processing solutions have led to a hugely complex and expensive set of data silos where IT spends more time managing the infrastructure than extracting value from the data. Big data architectures have attempted to solve the problem with large pools of cost-effective storage, but in doing so have often created on-premises management and administration challenges. These challenges of acquiring, installing and maintaining large clusters of computing resources gave rise...
Read More
Topics:
embedded analytics,
Analytics,
Business Intelligence,
Collaboration,
Data Governance,
Data Preparation,
Data,
data lakes,
AI and Machine Learning